3.1.79 \(\int \sqrt {a+a \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec ^2(c+d x) \, dx\) [79]

3.1.79.1 Optimal result
3.1.79.2 Mathematica [A] (verified)
3.1.79.3 Rubi [A] (verified)
3.1.79.4 Maple [B] (verified)
3.1.79.5 Fricas [A] (verification not implemented)
3.1.79.6 Sympy [F]
3.1.79.7 Maxima [B] (verification not implemented)
3.1.79.8 Giac [A] (verification not implemented)
3.1.79.9 Mupad [F(-1)]

3.1.79.1 Optimal result

Integrand size = 35, antiderivative size = 94 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\frac {\sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}-\frac {a (A-2 C) \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \tan (c+d x)}{d} \]

output
A*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d-a*(A-2*C)*s 
in(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+A*(a+a*cos(d*x+c))^(1/2)*tan(d*x+c)/d
 
3.1.79.2 Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.97 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (\sqrt {2} A \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos (c+d x)+2 (A+2 C \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 d} \]

input
Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2,x 
]
 
output
(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]*(Sqrt[2]*A*ArcTa 
nh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x] + 2*(A + 2*C*Cos[c + d*x])*Sin[( 
c + d*x)/2]))/(2*d)
 
3.1.79.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.12, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 3523, 27, 3042, 3460, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a} \left (A+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\int \frac {1}{2} \sqrt {\cos (c+d x) a+a} (a A-a (A-2 C) \cos (c+d x)) \sec (c+d x)dx}{a}+\frac {A \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sqrt {\cos (c+d x) a+a} (a A-a (A-2 C) \cos (c+d x)) \sec (c+d x)dx}{2 a}+\frac {A \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a A-a (A-2 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a}+\frac {A \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {a A \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-\frac {2 a^2 (A-2 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{2 a}+\frac {A \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a^2 (A-2 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{2 a}+\frac {A \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {-\frac {2 a^2 A \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {2 a^2 (A-2 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{2 a}+\frac {A \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {2 a^{3/2} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {2 a^2 (A-2 C) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{2 a}+\frac {A \tan (c+d x) \sqrt {a \cos (c+d x)+a}}{d}\)

input
Int[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2,x]
 
output
((2*a^(3/2)*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d 
- (2*a^2*(A - 2*C)*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/(2*a) + (A* 
Sqrt[a + a*Cos[c + d*x]]*Tan[c + d*x])/d
 

3.1.79.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.1.79.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(427\) vs. \(2(84)=168\).

Time = 7.78 (sec) , antiderivative size = 428, normalized size of antiderivative = 4.55

method result size
parts \(\frac {A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-2 a \left (\ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )+\ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +\ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{\sqrt {a}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}+\frac {2 C a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2}}{\sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(428\)
default \(\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-2 A \ln \left (\frac {2 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \sqrt {2}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 A \ln \left (-\frac {2 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \sqrt {2}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -16 C \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+A \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +A \sqrt {2}\, \ln \left (-\frac {2 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +4 A \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 C \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right ) \sqrt {2}}{2 \sqrt {a}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(467\)

input
int((A+C*cos(d*x+c)^2)*sec(d*x+c)^2*(a+cos(d*x+c)*a)^(1/2),x,method=_RETUR 
NVERBOSE)
 
output
A*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*a*(ln(4/(2*cos(1/2 
*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*a^(1/2)+2*a))+ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2 
)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a) 
))*sin(1/2*d*x+1/2*c)^2+ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos 
(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+ln( 
-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a 
*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+2*2^(1/2)*(a*sin(1/2*d*x+1/2* 
c)^2)^(1/2)*a^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)+2^(1/2))/(2*cos(1/2*d*x 
+1/2*c)-2^(1/2))/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d+2*C*a 
*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1 
/2)/d
 
3.1.79.5 Fricas [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.65 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\frac {{\left (A \cos \left (d x + c\right )^{2} + A \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (2 \, C \cos \left (d x + c\right ) + A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{4 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2*(a+a*cos(d*x+c))^(1/2),x, algori 
thm="fricas")
 
output
1/4*((A*cos(d*x + c)^2 + A*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7 
*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)* 
sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(2*C*cos(d*x + 
c) + A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos(d 
*x + c))
 
3.1.79.6 Sympy [F]

\[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int \sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**2*(a+a*cos(d*x+c))**(1/2),x)
 
output
Integral(sqrt(a*(cos(c + d*x) + 1))*(A + C*cos(c + d*x)**2)*sec(c + d*x)** 
2, x)
 
3.1.79.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 731 vs. \(2 (84) = 168\).

Time = 0.41 (sec) , antiderivative size = 731, normalized size of antiderivative = 7.78 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\text {Too large to display} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2*(a+a*cos(d*x+c))^(1/2),x, algori 
thm="maxima")
 
output
1/4*(8*sqrt(2)*C*sqrt(a)*sin(1/2*d*x + 1/2*c) - (4*sqrt(2)*cos(5/2*d*x + 5 
/2*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - 
 4*sqrt(2)*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) - (cos(2*d*x + 2*c)^2 + s 
in(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x 
+ c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 
+ 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1 
/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2 
*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c) 
, cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2* 
sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*a 
rctan2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x 
 + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), co 
s(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt 
(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arcta 
n2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2 
*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d* 
x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)* 
cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(s 
in(d*x + c), cos(d*x + c))) + 2) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))* 
sin(5/2*d*x + 5/2*c) + 4*(sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(2*d*...
 
3.1.79.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.36 \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=-\frac {\sqrt {2} {\left (\sqrt {2} A \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) - 8 \, C \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {4 \, A \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1}\right )} \sqrt {a}}{4 \, d} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2*(a+a*cos(d*x+c))^(1/2),x, algori 
thm="giac")
 
output
-1/4*sqrt(2)*(sqrt(2)*A*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2 
*sqrt(2) + 4*sin(1/2*d*x + 1/2*c)))*sgn(cos(1/2*d*x + 1/2*c)) - 8*C*sgn(co 
s(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) + 4*A*sgn(cos(1/2*d*x + 1/2*c))*s 
in(1/2*d*x + 1/2*c)/(2*sin(1/2*d*x + 1/2*c)^2 - 1))*sqrt(a)/d
 
3.1.79.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

input
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^2,x)
 
output
int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^2, x)